MCDONALDS POND RESTORATION SITE 2007 Annual Monitoring Report (Year 2)

Richmond County, North Carolina EEP Project No. D04020-2 Design Firm: International Paper

February 2008

- Prepared for: NCDENR ECOSYSTEM ENHANCEMENT PROGRAM 1652 Mail Service Center Raleigh, North Carolina 27699-1619
- Prepared by: ECOSCIENCE CORPORATION 1101 Haynes Street, Suite 101 Raleigh, North Carolina 27604

MCDONALDS POND RESTORATION SITE 2007 Annual Monitoring Report (Year 2)

RICHMOND COUNTY, NORTH CAROLINA

PREPARED BY:

INTERNATIONAL PAPER PROJECT MANAGER: MARK HUGHES 719 Southlands Road Bainbridge, GA 39819

AND

ECOSCIENCE CORPORATION PROJECT MANAGER: DAVID JONES 1101 Haynes Street, Suite 101 Raleigh, NC 27604

FEBRUARY 2008

EXCUTIVE SUMMARY

Introduction

In response to a Request for Proposal (RFP, No. 16-D04016) issued in December of 2003, International Paper Company (IP) proposed the establishment of the McDonalds Pond Restoration Site (hereafter referred to as the "Site") located in Richmond County, approximately two (2) miles northeast of the town of Hamlet and three (3) miles east of the town of Rockingham. In order to provide stream channel restoration and riverine wetland restoration, IP has removed the McDonalds Pond Dam located on Falling Creek.

The Site comprises approximately 128 acres, and includes the 17.7 acre McDonalds Pond (a.k.a Shepards Lake), portions of Falling Creek, numerous headwater tributaries and over 80 acres of forested riparian wetlands, seepage wetlands, and marsh wetlands.

The McDonalds Pond Dam was removed in a manner to minimize potential impacts to water resources both upstream and downstream of the dam. Gradual dewatering and phased dam removal were undertaken to avoid introducing sediments and pollutants into the receiving Falling Creek reaches downstream. Heavy equipment operated from or within the footprint of the former dam during dam removal operations, thereby minimizing the impact to the adjacent intact forest and wetland soil. Dam removal began with the dewatering (lowering) of the pond in the fall of 2005, followed by the clearing of trees and small bushes from the former earthen dam in February 2006. Excavation activities continued for approximately two weeks until dam removal was complete in mid-March 2006.

Monitoring Plan

Monitoring activities began in March 2006 (Year 1), and will be performed for at least five-years or until success criteria are achieved. Post removal monitoring data will be compared to reference sites as well as biological baseline values collected in September 2004. Primary success criteria of the project include: 1) the successful classification of restored/enhanced reaches as functioning systems, 2) channel stability indicative of a stable stream system, 3) development of characteristic lotic aquatic communities, 4) establishment of wetland hydrology (as defined in the U.S. Army Corps of Engineers [USACE] Wetlands Delineation Manual) within the former pond footprint, and 5) vegetative success of 320 stems/acre after the third year of monitoring.

Year 2 Monitoring Results (2007)

Stream Assessment

Restored and enhanced segments of Falling Creek have continued to establish braided, anastomosed, bifurcated, and single-threaded channels characteristic of the area. In addition, restored and enhanced stream segments across the Site appear to have further developed stream pattern, profile, and dimension similar to that of reference reaches. Cross-sections located within the former pond indicate that a majority of the deposited pond sediment has transported downstream, leaving behind a characteristic sand-dominated streambed. In addition, stream banks have further stabilized with native vegetation.

Aquatic community assemblages within the former pond have maintained characteristics of a natural lotic system. Fifty percent (50%) of the macroinvertebrate samples taken in October 2007 (Year 2) from restored segments of Falling Creek (within the former pond) consisted of macroinvertebrate genera predominantly found in lotic systems. Genera predominantly found in lentic systems represented only four percent (4%) of species collected within the former pond during the Year 2 sample. Only two (2) genera of the EPT (Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]) taxa were collected within McDonalds Pond during baseline sampling (pre dam removal, September 2004) while there were 12 different EPT genera collected within the restored segments of Falling Creek (within the former pond) during October 2007. Year 2 benthic data also shows an increase in the number of taxa collected as well as a decrease in the biotic index, which indicates improved water quality.

North Carolina Division of Water Quality (NCDWQ) Habitat Assessment Forms (HAFs) were completed at multiple locations along the restored and enhanced segments of Falling Creek. The HAF scores indicate that the restored and enhanced stream segments are very similar to the reference sites with a slightly lower score primarily due to the lack of canopy trees within the former pond, which results in less stream shading and allochthonous input for in-stream habitat.

Wetland Vegetation Assessment

Vegetation monitoring for Year 2 was performed based on the Carolina Vegetation Survey (CVS) Levels 1 and 2 at eight (8) 10 x 10 meter plots. Based on Year 2 monitoring, the average count of surviving planted species is 587 stems per acre. If volunteer species are included, the total survival increases to 1781 stems per acre. The Site is on track to exceed the established success criteria of 320 stems/acre after the third year and 260 stems/acre after the fifth and final year.

Wetland Hydrology Assessment

Even though extreme drought conditions occurred in the area, all four (4) on-Site groundwater gauges have registered water levels within the upper 12 inches of the soil surface for at least 28 consecutive days (Richmond County, NRCS) or 12.5 percent (12.5%) of the growing season. Therefore, wetland hydrology at the Site is meeting the required success criteria.

Summary

After the second year of monitoring, restored streams and lotic conditions have continued to develop within the former pond. Streams have migrated more toward that of reference systems, with characteristic pattern, profile, and dimension, as well as a continued improvement in aquatic community species composition and diversity. Cross section surveys reveal characteristics of an E-channel with some areas of braiding consistent with a DA-channel. Groundwater gauge data within the former pond closely resembles that of the upstream reference gauge and restored wetland hydrology within the former pond has supported the establishment of a Streamhead Pocosin/Atlantic White Cedar forest community. Stream (physical and biological), wetland vegetation, and wetland hydrology success criteria were met in Year 2 monitoring.

TABLE OF CONTENTS

EXCUT	TIVE SU	MMAR	Y	i
1.0	PROJE	CT BAC	KGROUND	. 1
	1.1	Locatio	n and Setting	. 1
	1.2	Restora	tion Structure and Objectives	. 1
	1.3	Project	Objectives	. 1
	1.4	Project	History and Background	. 3
2.0	PROJE	CT CON	DITION AND MONITORING RESULTS	. 5
	2.1	Stream	Assessment	. 5
		2.1.1	Stream Channel Morphology	. 5
		2.1.2	Aquatic Communities	11
		2.1.3	Habitat Assessment	13
	2.2	Wetland	d Assessment	14
		2.2.1	Vegetation Assessment	14
		2.2.2	Groundwater Hydrology	15
		2.2.3	Wetland Criteria Attainment	15
REFER	ENCES			16

APPENDICIES

Appendix A: Figures

1. Site Location

- 2. Stream Monitoring Plan View
- 3. Stream Monitoring Reach Plan Views
- 4. Vegetation Monitoring Plots
- 5. Monitoring Gauges
- Appendix B: Stream Geomorphology Data
- Appendix C: Aquatic Community Data
- Appendix D: NCDWQ Habitat Assessment Field Data Sheet: Coastal Plain
- Appendix E: Vegetation Monitoring Plot Photos

Appendix F: Groundwater Gauge Hydrographs

LIST OF TABLES

Summary of Stream and Wetland Mitigation Units	2
Project Activity and Reporting History	3
Project Contacts	3
Project Background	4
Baseline Morphology and Hydrologic Summary	7
Morphology and Hydraulic Monitoring Summary	8
Morphology and Hydraulic Monitoring Summary (Cont.)	9
Morphology and Hydraulic Monitoring Summary (Cont.)	10
Benthic Macroinvertebrate Metric Summary	.12
NCDWQ Habitat Assessment Form Scores	.13
Stem Counts for Planted Species Arranged by Plot	.14
Stem Counts for Volunteer Species Arranged by Plot	.14
Stem Counts for Volunteer Species Arranged by Plot (Cont.)	.15
Wetland Criteria Attainment	.15
	Summary of Stream and Wetland Mitigation Units Project Activity and Reporting History Project Contacts Project Background Baseline Morphology and Hydrologic Summary Morphology and Hydraulic Monitoring Summary (<i>Cont.</i>). Morphology and Hydraulic Monitoring Summary (<i>Cont.</i>). Morphology and Hydraulic Monitoring Summary (<i>Cont.</i>). Benthic Macroinvertebrate Metric Summary NCDWQ Habitat Assessment Form Scores Stem Counts for Planted Species Arranged by Plot Stem Counts for Volunteer Species Arranged by Plot (<i>Cont.</i>). Wetland Criteria Attainment.

1.0 PROJECT BACKGROUND

1.1 Location and Setting

The North Carolina Ecosystem Enhancement Program (EEP) is currently developing stream and wetland restoration strategies for the Yadkin-Pee Dee River Basin, Cataloging Unit 03040201. As a part of this effort, International Paper (IP) was selected to complete the McDonalds Pond Restoration Project located in Richmond County. The McDonalds Pond Restoration Site ('hereafter referred to as the "Site") is located approximately two (2) miles northeast of the town of Hamlet and three (3) miles east of the town of Rockingham between NC Route 1 and NC Route 177 (Figure 1, Appendix A).

1.2 Restoration Structure and Objectives

Falling Creek, the major drainage feature on-Site, was previously impounded by the McDonalds Pond Dam, constructed over 70 years ago. Approximately 3,700 linear feet of Falling Creek and tributaries were impacted by the construction of the pond dam including streams contained within the pond footprint, as well as stream sections located both up and downstream of the pond. In addition, approximately 17.7 acres of riverine wetland were inundated with the construction of the dam. Approximately 4.2 acres of the floodplain immediately upstream of the pond were impacted by the "backwater effect" (the backing-up of water), creating marsh wetlands with saturated conditions unsuitable for historic wetland communities. An eroded pond outfall channel located at the northern extent of the dam drained adjacent wetlands and redirected historic flows of the Falling Creek floodplain.

Stream restoration efforts were achieved through the removal of the McDonalds Pond Dam resulting in the restoration of 2,969 linear feet of stream. The former dam was excavated to the approximate level of the pre-existing valley contours, allowing the stream unrestricted flow through the Site. Stream restoration efforts were designed to utilize passive stream channel restoration processes, allowing the channel to reestablish naturally following the removal of the dam. Stream enhancement (Level I) was achieved through the removal of the dam and the filling of the northern outfall channel, which returned the historic hydrologic characteristics (stream volume and velocity) to 770 feet of impacted stream channel downstream of the former dam. Riverine wetland restoration was accomplished within the former 17.7 acre pond footprint through the excavation of the McDonalds Pond Dam and the establishment of native Streamhead Pocosin and Atlantic White Cedar forest communities. Additionally, the Site includes the preservation of 5,800 linear feet of stream, 77.8 acres of wetland, and 25.6 acres of upland/wetland ecotone buffer.

1.3 **Project Objectives**

The primary project goals include 1) the restoration of a stable, meandering stream channel through the areas impacted by the McDonalds Pond Dam, 2) the restoration of historic lotic aquatic communities that represent the Site's natural range in variation, 3) the restoration of historic wetland conditions within the pond footprint, and 4) the restoration of natural wetland plant communities within their historic locations.

Additional potential benefits of the project include the restoration of wildlife functions associated with a riparian corridor and stable stream and the enhancement of water quality function in the on-Site, upstream, and downstream segments of Falling Creek and tributaries.

The specific goals of this project are to:

- Restore approximately 2,969 linear feet of historic stream course, flow volumes, and patterns through the marsh wetlands, McDonalds Pond footprint, and immediately downstream of the existing dam.
- Enhance an additional approximate 770 linear feet of Falling Creek downstream of the restored stream channel extending into the gas line easement.
- Protect the headwaters of Falling Creek that are located within the Site through preservation of approximately 5,800 linear feet of Falling Creek and associated tributaries.
- Restore approximately 17.7 acres of forested riverine wetlands within the McDonalds Pond footprint.
- Enhance 4.2 acres of forested riverine wetlands within the marsh wetlands located at the head of McDonalds Pond.
- Preserve 77.8 acres of forested riverine wetlands adjacent to Falling Creek and associated tributaries.
- Restore and enhance habitat for vegetation and wildlife species, characteristic of Streamhead Pocosin and Atlantic White Cedar Forest (Schafale and Weakley 1990).
- Enhance the function and value of the Falling Creek wetland community through the preservation of 25.6 acres of buffer along the Falling Creek stream/wetland complex.

Table 1. Summary of Stream and Wetland Mitigation Units															
Restoration Activities	Restoration ActivitiesLinear feetAcresMitigation RatiosPercentage of Mitigation Units														
Stream Restoration	1,784	N/A	1:1		1,784										
Stream Restoration (undefined channel)	1,185	N/A	1:1	75	1,185										
Stream Enhancement (Level I)	770	N/A	1:1.5		513										
Stream Preservation	5,800	N/A	1:5	25	1,160										
	Total Str	eam Mitiga	tion Units (SN	AUs) Provided	4,642										
		r	Fotal SMUs U	nder Contract	4,364										
Wetlands Restoration	N/A	17.7	1:1	75	17.7										
Wetland Enhancement	N/A	4.2	1:2	25	2.1										
Wetlands Preservation	N/A	19	1:5	25	3.8										
]	AUs) Provided	23.6													
	Total WMUs Under Contract														

1.4 **Project History and Background**

Table 2. Project Activity and Reporting History													
Activity Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery										
Restoration Plan	*NA	July 2005	August 2005										
Final Design (90%)	*NA	July 2005	August 2005										
Construction	*NA	N/A	March 2006										
Temporary S&E mix applied to entire project area	*NA	N/A	March 2006										
Bare Root Seedling Installation	*NA	N/A	March 2006										
Mitigation Plan	*NA	June 2006	July 2006										
Final Report	*NA	Oct 2006	Oct 2006										
Year 1 Vegetation Monitoring	Dec 2006	Oct 2006	Dec 2006										
Year 1 Stream Monitoring	Dec 2006	Oct 2006	Dec 2006										
Year 2 Vegetation Monitoring	Dec 2007	Oct 2007	February 2008										
Year 2 Stream Monitoring	Dec 2007	Oct 2007	February 2008										

*NA – Scheduled completion dates unknown due to unanticipated project delays.

Table 3. Project Contacts												
Designer International Paper	719 Southlands Road Bainbridge, GA 39819											
	(229) 246-3642											
Construction Contractor	28723 Marston Road											
Environmental Repair, Inc.	Marston, NC 28363 (910) 280-6043											
Planting Contractor	PO BOX 789											
Garcia Forest Service, Inc.	Rockingham, NC 28379											
	(910) 997-5011											
Seeding Contactor	28723 Marston Road											
Environmental Repair, Inc.	Marston, NC 28363											
	(910) 280-6043											
Nursery Stock Suppliers	6726 Highway 169											
International Paper	Bellville, GA 30414											
	(912) 739-4613											
	Route 1, Box 1097: County Road #3											
	Shellman, GA 39886											
	(229) 679-5640											

Table 3.Project Contacts (Cont.)											
Nursery Stock Suppliers											
International Paper	5594 Highway 38 South										
	Blenheim, SC 29516										
	(843) 528-3203										
North Carolina Division of Forest Resources											
	726 Claridge Nursery Road										
	Goldsboro, NC 27530										
	(919) 731-7988										
Monitoring Performers	1101 Haynes Street, Suite 101										
EcoScience Corporation	Raleigh, NC 27604										
	(919) 828-3433										
Stream Monitoring POC	David Jones										
Vegetation Monitoring POC	David Jones										

Table 4. Pro	ject Background
Project County	Richmond
Drainage Area	2.5 square miles
Impervious cover estimate (%)	<5 percent
Stream Order	3rd order
Physiographic Region	Southeastern Plains
Ecoregion (Griffith and Omernik)	Sandhills
Rosgen Classification of As-built	DA5/E5
Cowardin Classification	Stream (R2UB2)
Dominant soil types	Johnston (JmA)
	Ailey (AcB, AcC)
	Candor-Wakulla Complex (CaC, WcB)
Reference Site ID	Falling Creek
USGS HUC for Project and Reference	03040201
NCDWQ Sub-basin for Project and Reference	03-07-16
NCDWQ classification for Project and Reference	WSIII
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a	Yes
303d listed segment?	
Reasons for 303d listing or stressor	Aquatic weeds
Percent of project easement fenced	NA

2.0 PROJECT CONDITION AND MONITORING RESULTS

The monitoring results described herein document the Year-2 (2007) monitoring activities. Stream monitoring activities continued at two (2) stream reaches that were established in April 2006. Each monitoring reach is approximately 150 feet in length and is comprised of one (1) stream cross-section where stream profile and dimension are monitoring activities in October 2006 (Figure 2, Appendix A). Wetland vegetation monitoring activities were conducted in August 2007 and consist of an inventory of planted and volunteer species within eight (8) plots located throughout the former pond (Figure 4, Appendix A). Wetland hydrology monitoring activities include groundwater gauge monitoring conducted throughout the growing season (March 27 - November 5) (NRCS 1999) at four (4) gauges located within the former pond (Figure 5, Appendix A).

2.1 Stream Assessment

2.1.1 Stream Channel Morphology

Stream channel cross-sectional surveys were performed at all ten (10) on-Site monitoring locations in October 2007 (Figure 2, Appendix 2). Bankfull channel geometry for surveyed cross-sections are presented in Tables 5, 6, 6a, and 6b. Cross-section parameters were not generated for XS2, XS7, or XS8 where stream braiding has developed multiple active channels. Stream pattern parameters including channel beltwidth, radius of curvature, meander wavelength, and meander width ratio were not generated this year, and will be re-evaluated during Year-3 monitoring. Cross-section parameters for As-built reference reaches and Year-1 monitoring have been updated to a higher level accuracy attained by computer aided design (CAD), and allows for comparable metrics in subsequent monitoring years. Cross-section plots are represented in Figures B1-B10 in Appendix B.

In general, bankfull channel parameters were largely unchanged compared to conditions assessed during Year 1 monitoring. Scouring and transportation of bank and bed material was detected at some monitoring cross-sections where restored channels continue to migrate towards reference conditions. Subsidence of surface soils has continued in some locations within the former pond, due in part to the evaporation of exposed organic material and the continued shrink/swell of formerly inundated soils. Soil subsidence will likely diminish as herbaceous and woody vegetation further stabilize the soil and provide shading to the developing forest floor.

Stream longitudinal profile was surveyed for approximately 900 feet within the restored channel, including the section of stream between on-Site Reach 3 and on-Site Reach 2 (Figure 2, Appendix A). Longitudinal profile data for this portion of the stream is plotted along with Year 1 conditions in Figure B-11, Appendix B. A typical riffle/pool sequence is currently absent from this portion of the stream. The Site's natural low gradient and the large amount of coarse woody debris present within the channel has produced numerous depositional features (traverse and diagonal bars) scattered among scour pools of varying sizes. As a result, longitudinal profile parameters were not generated for the stream due to the complexity and irregularity of the channel bed.

The stream channel substrate is naturally comprised of more than 90 percent (90%) sand throughout the Site. As a result, substrate sampling was not conducted at the cross-sections and is not included with the summarized cross-sectional parameters in Tables 5-6b.

		Ta	ble 5.	Baseline Morphology and Hydrologic Summary												
	Reg	ional C	urve	Refe	rence S	tream	Refe	erence S	tream		As-Bui	lt		As-Bui	lt	
Parameter		Interval			Reach	1		Reach 4	4	On-	Site Re	ach 2	On	-Site Re	ach 3	
				(233 linear feet)			(175 linear feet)			(186	5 linear	feet)	(293 linear feet)			
				((= , .			((=>			
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
BF Width (ft)	9.6	13.5	12.7	N/A	N/A	13.0	N/A	N/A	9.1	N/A	N/A	7.9	N/A	N/A	11.3	
Floodprone Width (ft)	300.0	600.0	400.0	N/A	N/A	500.0	N/A	N/A	300.0	N/A	N/A	450.0	N/A	N/A	400.0	
BF Cross Sectional Area (ft ²)	9.4	18.1	16.1	N/A	N/A	14.3	N/A	N/A	9.0	N/A	N/A	7.6	N/A	N/A	10.8	
BF Mean Depth (ft)	1.0	1.3	1.3	N/A	N/A	1.1	N/A	N/A	1.0	N/A	N/A	1.0	N/A	N/A	1.0	
BF Max Depth (ft)	N/A	N/A	N/A	N/A	N/A	1.9	N/A	N/A	2.0	N/A	N/A	1.3	N/A	N/A	1.5	
Width/Depth Ratio	9.8	10.0	9.9	N/A	N/A	11.4	N/A	N/A	9.2	N/A	N/A	8.3	N/A	N/A	11.7	
Entrenchment Ratio	28.4	49.7	32.2	N/A	N/A	38.6	N/A	N/A	33.0	N/A	N/A	57.0	N/A	N/A	35.5	
Wetted Perimeter (ft)	N/A	N/A	N/A	N/A	N/A	14.9	N/A	N/A	10.9	N/A	N/A	9.4	N/A	N/A	12.4	
Hydraulic Radius (ft)	N/A	N/A	N/A	N/A	N/A	1.0	N/A	N/A	0.8	N/A	N/A	0.8	N/A	N/A	0.9	
Pattern																
Channel Beltwidth (ft)	N/A	N/A	N/A	18.2	35.5	22.1	12.6	18.5	14.0	19.3	22.6	21.0	8.9	20.9	11.0	
Radius of Curvature (ft)	N/A	N/A	N/A	18.6	46.3	21.1	4.2	27.7	6.8	10.3	24.3	15.8	4.1	18.2	13.4	
Meander Wavelength	N/A	N/A	N/A	61.2	88.1	78.9	17.5	44.6	21.6	39.1	59.9	47.9	19.1	49.2	28.0	
Meader Width Ratio	N/A	N/A	N/A	1.4	2.8	1.7	1.5	2.2	1.6	1.6	1.9	1.7	1.5	2.2	1.9	
Profile		-										-				
Riffle Length (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	
Riffle Slope (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	
Pool Length (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	
Pool Spacing (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	
Substrate																
d50 (mm)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	
	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	
							1			T			-			
Additional Reach Parameters																
Valley Length (ft)		N/A			N/A			N/A			N/A			N/A		
Channel Length (ft)		N/A			N/A			N/A			N/A			N/A		
Sinuosity		N/A			1.3			1.1			1.1			1.1		
Water Surface Slope (ft/ft)	N/A				0.003			0.005			0.004			0.004		
BF Slope (ft/ft)	N/A				0.003			0.005			0.004			0.004		
Rosgen Classification		N/A			E5			E5			E5		E5			
Habitat Index	N/A				NA*			NA*			NA*		NA*			
Macrobenthos	N/A				NA*			NA*			NA*		NA*			

Table 6. Morphology and Hydraulic Monitoring Summary																			
Parameter		Cr	oss-Sec	ction X	S1			Cr	oss-Se	ction X	S2		XS3						
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	
BF Width (ft)	11.8	11.8					NA*	NA*					8.4	8.8					
Floodprone Width (ft)	400.0	400.0					NA*	NA*					400.0	400.0					
BF Cross Sectional Area (ft ²)	4.9	4.9					NA*	NA*					4.2	6.3					
BF Mean Depth (ft)	0.4	0.4					NA*	NA*					0.5	0.7					
BF Max Depth (ft)	0.8	0.8					NA*	NA*					1.0	1.2					
Width/Depth Ratio	28.9	28.8					NA*	NA*					16.7	12.4					
Entrenchment Ratio	33.8	33.9					NA*	NA*					47.9	45.4					
Wetted Perimeter (ft)	12.1	11.1					NA*	NA*					9.3	8.7					
Hydraulic Radius (ft)	0.4	0.4					NA*	NA*					0.4	0.7					
Substrate																			
d50 (mm)	NA*	NA*					NA*	NA*					NA*	NA*					
d84 (mm)	NA*	NA*					NA*	NA*					NA*	NA*					
Parameter	MY	-01 (20)06)	MY	-02 (20	007)	MY	MY-03 (2008)			-04 (20	009)	MY	-05 (20)10)	M	Y+ (20	11)	
							<u> </u>						<u>```</u>			<u> </u>			
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
Channel Beltwidth (ft)	8.9	22.6	15.6	NA*	NA*	NA*													
Radius of Curvature (ft)	4.1	24.3	13.4	NA*	NA*	NA*													
Meander Wavelength	19.1	59.9	38.0	NA*	NA*	NA*													
Meader Width Ratio	1.5	2.2	1.9	NA*	NA*	NA*													
Profile																			
Riffle Length (ft)	NA*	NA*	NA*	NA*	NA*	NA*													
Riffle Slope (ft)	NA*	NA*	NA*	NA*	NA*	NA*													
Pool Length (ft)	NA*	NA*	NA*	NA*	NA*	NA*													
Pool Spacing (ft)	NA*	NA*	NA*	NA*	NA*	NA*													
Additional Decembrane	1			1			1			1			1			1			
Valley L angth (ft)		NI/A			NI/A														
Channel Length (ft)		N/A			N/A														
		1 1			1 1														
$\frac{1}{1}$		1.1		1.1															
water Surface Slope (11/11)				0.004															
DE Clone (A/A)		0.004			0.004														
BF Slope (ft/ft)		0.004 0.004 DA5/E5			0.004 0.004 DA5/E6														
BF Slope (ft/ft) Rosgen Classification Habitat Index		0.004 0.004 DA5/E5 NA*			0.004 0.004 DA5/E6 NA*)													

Table 6a. Morphology and Hydraulic Monitoring Summary (Cont.)																		
Parameter		Cro	oss-Sec	tion X	S4			Cro	ss-Sect	ion XS	R2	Cross-Section XS5						
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	25.1	29.8					7.9	8.9					6.4	19.2				
Floodprone Width (ft)	500.0	500.0					450.0	450.0					400.0	400.0				
BF Cross Sectional Area (ft ²)	6.7	14.0					7.6	8.7					3.9	6.9				
BF Mean Depth (ft)	0.3	0.5					1.0	1.0					0.6	0.4				
BF Max Depth (ft)	0.9	1.9					1.3	1.6					1.9	2.2				
Width/Depth Ratio	96.7	64.8					8.2	9.1					10.6	53.3				
Entrenchment Ratio	19.9	16.8					57.0	50.6					62.9	20.9				
Wetted Perimeter (ft)	25.2	30.4					9.4	10.3					8.6	21.0				
Hydraulic Radius (ft)	0.3	0.5					0.8	0.9					0.5	0.3				
Substrate																		
d50 (mm)	NA*	NA*					NA*	NA*					NA*	NA*				
d84 (mm)	NA*	NA*					NA*	NA*					NA*	NA*				
Parameter		Cro	ss-Sect	tion XS	SR3			Cro	oss-Sec	tion X	86			Cro	oss-Sec	tion X	S7	
Dimension	MV1	MV2	MV2	MVA	MV5	MV	MV1	MV2	MV2	MXA	MV5	MV	MV1	MV2	MV2	MVA	MV5	MV
Dimension			IVI I S	IVI I 4	IVI I J	IVI I T	12.0	MI12	NI I S	IVI I 4	IVI I J	IVI I +		NII Z	IVI I 5	IVI I 4	IVI I J	IVI I +
BF Width (ft)	11.5	16.1					13.9	21./					NA*	NA*				
Floodprone Width (ft)	400.0	400.0					350.0	350.0					NA*	NA*				
BF Cross Sectional Area (ft ²)	10.8	11.4					8.1	13.1					NA*	NA*				
BF Mean Depth (ft)	1.0	0.7					0.6	0.6					NA*	NA*				
BE Max Depth (ft)	15	1.8					2.5	33					NA*	NA*				

Parameter		Cro	ss-Sect	tion XS	SR3		Cross-Section XS6							Cross-Section XS7						
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+		
BF Width (ft)	11.3	16.1					13.9	21.7					NA*	NA*						
Floodprone Width (ft)	400.0	400.0					350.0	350.0					NA*	NA*						
BF Cross Sectional Area (ft ²)	10.8	11.4					8.1	13.1					NA*	NA*						
BF Mean Depth (ft)	1.0	0.7					0.6	0.6					NA*	NA*						
BF Max Depth (ft)	1.5	1.8					2.5	3.3					NA*	NA*						
Width/Depth Ratio	11.7	22.9					24.0	36.2					NA*	NA*						
Entrenchment Ratio	35.5	24.9					25.1	16.1					NA*	NA*						
Wetted Perimeter (ft)	12.4	16.7					15.0	24.8					NA*	NA*						
Hydraulic Radius (ft)	0.9	0.7					0.5	0.5					NA*	NA*						
Substrate																				
d50 (mm)	NA*	NA*					NA*	NA*					NA*	NA*						
d84 (mm)	NA*	NA*					NA*	NA*					NA*	NA*						

	Table 6b. Morphology and Hydraulic Monitoring Summar																	
Parameter		Cr	oss-Se	ction X	S8													
Dimension								NOV2	MV2	MXA	MVZ	MX	MX1	MVO	NOV2	34374	MNG	MX
Dimension	MYI	MY2	MY3	MY4	MYS	MY+	MY I	MY2	MY3	MY4	MYS	MY+	MYI	MY2	MY3	MY4	MYS	MY+
BF Width (ft)	NA*	NA*																
Floodprone Width (ft)	NA*	NA*																
BF Cross Sectional Area (ft ²)	NA*	NA*																
BF Mean Depth (ft)	NA*	NA*																
BF Max Depth (ft)	NA*	NA*																
Width/Depth Ratio	NA*	NA*																
Entrenchment Ratio	NA*	NA*																
Wetted Perimeter (ft)	NA*	NA*																
Hydraulic Radius (ft)	NA*	NA*																
Substrate																		
d50 (mm)	NA*	NA*																
d84 (mm)	NA*	NA*																

2.1.2 Aquatic Communities

Benthic macroinvertebrates were sampled within Falling Creek during Year 2 monitoring in October 2007. Aquatic community data, located in Appendix C, are based on laboratory identifications of benthic macroinvertebrate taxa by Pennington and Associates, Inc., a NCDWQ-certified lab.

Aquatic community assemblages within the former pond continue to develop characteristics associated with a lotic system. Fifty percent (50%) of the macroinvertebrate samples collected during Year 2 monitoring from restored segments of Falling Creek (within the former pond) consisted of macroinvertebrate genera predominantly found in lotic systems. Compared to Year 1 monitoring, genera found in both lotic and lentic systems (with a preference for lotic) increased by 8 percent (8%) within Falling Creek. Genera predominantly found in lentic systems made up only 4 percent (4%) of taxa collected from Falling Creek.

Graph 1. Baseline, Year 1, and Year 2 comparisons between collected benthic macroinvertebrates and their habitat preferences (Source: Merritt and Cummins 1984).

In addition to benthic macroinvertebrate habitat preference comparisons, other comparative metrics including the total number of organisms collected, the total taxa represented in the collection, the richness (diversity) of EPT taxa, and the biotic index can be used to evaluate aquatic habitat restoration. Table 7 summarizes the mean values for all these metrics from benthic macroinvertebrates collected within Falling Creek during baseline, Year 1, and Year 2 sampling.

Table 7. Benthic Macroinvertebrate Metric Summary								
Monitoring Year	Total Organisms	Total Taxa	EPT Richness	Biotic Index				
Baseline (2005)	32	15	2	7.42				
Year 1 (2006)	209	35	16	5.33				
Year 2 (2007)	187	38	12	4.95				

As seen in Table 7, all comparative metrics quantitatively improved following dam removal. In the current monitoring year, species diversity increased, with the presence of three new taxa that were not previously collected. Additionally, the decrease in biotic index values indicates the progression of a benthic community less tolerant of poor water quality. The biotic index is derived from North Carolina Tolerance Values that are assigned to each collected species. These Tolerance Values range from 0 for organisms intolerant of organic wastes to 10 for organisms very tolerant of organic wastes. Since dam removal, the decreasing biotic index values are indicative of improved water quality within Falling Creek.

Exceptional drought conditions (highest ranking drought classification) within the Falling Creek watershed during benthic sampling (October 1-5) may have altered benthic community composition and abundance. The following diagram (NCDMAC 2007) shows the drought conditions on October 2, 2007 for North Carolina. The Falling Creek watershed and McDonalds Pond Restoration Site are within the Exceptional Drought (D4) classification.

2.1.3 Habitat Assessment

North Carolina Division of Water Quality (NCDWQ) Habitat Assessment Forms (HAFs) were completed at each cross-section location across the Site (Appendix D). Nearly all the HAF scores increased during Year 2 monitoring demonstrating an increased availability and quality of aquatic habitat. This improvement is largely due to the favorable prevalence of in stream habitat including sticks, snags, logs, leafpacks, and macrophytic vegetation. Limitations to habitat scores result from the lack of canopy trees within the former pond that would otherwise provide stream shading and allochthonous input for instream habitat. These scores will likely increase as the developing forest community begins to provide shading and plant material to the establishing stream systems. The HAF scores are summarized in Table 8.

Table 8. NCDWQ Habitat Assessment Form Scores								
Cross section	Score							
Cross-section	MY1	MY2	MY3	MY4	MY5	MY+		
XSR1 (Reference)	98	98						
XSR4 (Reference)	97	97						
XS1	78	95						
XS2	80	80						
XS3		98						
XS4	63	66						
XSR2	88	93						
XS5	69	80						
XSR3	85	90						
XS6		71						
XS7		76						
XS8	86	90						

In addition, stream habitat characterizations including habitat composition and percentage representation were completed using plan-view drawings derived from total station surveys of the stream monitoring reaches (Figure 3, Appendix A). Drawings were updated in the field through visual observation and habitat composition (e.g., adjacent streambank trees, root mats/balls, stumps, coarse woody debris, leaf packs, undercut banks, etc.) was transcribed onto each drawing by hand. Drawings were digitized using GIS technology to determine rough estimates of habitat type percent representation. As stated in the Year 1 monitoring report, a relationship between the relative abundance of the genera *Hydropsyche* (Order – Trichoptera; Family – Hydropsychidae) and *Pseudocloeon* (Order – Ephemeroptera; Family – Baetidae) and the relative prevalence of macrophytic vegetation within the channel was speculated based on Year 1 macroinvertebrate and stream habitat characterizations. This relationship was not observed during the Year 2 monitoring activities. However, an increase in the number of predators, shredders, and shredder/collectors and a decrease in the number of collector/gatherers and filter/collectors may indicate a slight shift in early successional aquatic communities to that of a more stable climax aquatic community.

2.2 Wetland Assessment

2.2.1 Vegetation Assessment

Eight (8) 10 x 10 meter plots were sampled in accordance with the Carolina Vegetation Survey Protocol. Planted stems (woody) were marked with flagging and the species, height, diameter, vigor and coordinate location within each plot was recorded. Volunteer species where noted and placed into height classes. The Site is currently meeting the established success criteria for vegetation based on the survival of the planted species with an average density of 587 trees per acre. Including volunteer species raises the vegetation survival within the Site to 1,781 trees per acre. An inventory of planted stems is given in Table 9 and plots are mapped in Figure 4 (Appendix A). A tally of volunteer woody species is listed in Table 9a. A mis-numbering of vegetation plots occurred in the Year 1 monitoring report and has been corrected. Year 1 and Year 2 photographs are provided for comparison in Appendix E.

Table	Table 9. Stem Counts for Planted Species Arranged by Plot											
Species				Plo	ots	Initial Year 1					Year 2	Survival
	1	2	3	4	5	6	7	8	Totals	Totals	Totals	%
Trees												
Chamaecyparis thyoides	4	4	2	2	2	7	7	3	32	31	31	97
Liriodendron tulipifera	0	0	1	0	2	0	0	0	6	6	3	50
Magnolia virginiana	0	6	3	0	0	1	1	0	10	10	11	110
Nyssa biflora	4	5	3	6	0	2	6	2	29	29	28	97
Persea borbonia	0	0	0	0	0	0	1	0	1	1	1	100
Pinus serotina	4	3	4	1	8	2	3	5	32	32	30	94
Pinus taeda	1	2	0	3	0	0	0	6	12	12	12	100

Table 9a. Stem Counts for Volunteer Species Arranged by Plot										
Species	Plots						Year 1	Year 2		
-	1	2	3	4	5	6	7	8	Totals	Totals
Trees										
Acer rubrum	1	3	3	2	0	0	0	7	12	16
Betula nigra	0	0	0	0	5	0	0	0	0	5
Chamaecyparis thyoides	0	2	1	1	0	0	0	0	0	4
Cyrilla racemifllora	0	0	0	0	0	0	0	0	1	0
Liquidambar stryaciflua	0	0	0	0	1	0	0	0	0	1
Liriodendron tulipifera	0	0	0	0	1	6	0	0	14	7
Magnolia virginiana	0	0	0	0	0	1	0	0	2	1
Nyssa biflora	0	0	0	0	0	1	0	0	0	1
Pinus serotina	7	24	81	5	1	39	1	7	105	168
Pinus taeda	0	0	14	1	1	12	1	7	0	29
Salix nigra	0	0	0	0	0	0	1	0	7	1

Table 9a. Stem Counts for Volunteer Species Arranged by Plot (Cont.)								ont.)		
Species				P	ots				Year 1	Year 2
-	1	2	3	4	5	6	7	8	Totals	Totals
Shrubs										
Clethra alnifolia	0	0	0	0	0	0	0	1	1	1
Baccharis halimifolia	0	0	0	0	0	0	0	0	1	0
Kalmia angustifolia	0	0	0	0	0	0	0	0	1	0
Vaccinium corymbosum	2	0	0	0	0	0	0	0	0	2

2.2.2 Groundwater Hydrology

All four (4) groundwater gauges located on-Site are currently meeting the wetland hydrologic success criteria. Groundwater levels were recorded within the upper 12 inches of the soil surface for approximately 95 consecutive days corresponding to approximately 42 percent (42%) of the growing season [March 27^{th} – November 5^{th}] in Richmond County (NRCS 1999). Groundwater gauge locations are depicted in Figure 5 (Appendix A). Groundwater gauge hydrographs are plotted on Figure F-1 (2006) and Figure F-2 (2007) (Appendix F).

2.2.3 Wetland Criteria Attainment

Table 10. Wetland Criteria Attainment								
GaugeID	Gauge Hydrology Threshold Met?	Vegetation Plot ID	Vegetation Survival Threshold Met?					
Coursel	V	1	Y					
Gauger	Ŷ	2	Y					
Course	V	3	Y					
Gauge2	Ŷ	4	Y					
G2	V	5	Y					
Gauges	Ŷ	6	Y					
	V	7	Y					
Gauge4	Y	8	Y					

REFERENCES

- Harod, J.J. 1964. The Distribution of Invertebrates on Submerged Aquatic Plants in a Chalk Stream. Journal of Animal Ecology. Vol. 33, No. 2. (June 1964), pp. 335-348.
- Merritt, R.W. and K.W. Cummins. 1984. An Introduction to the Aquatic Insects of North America. Kendall-Hunt Publ.
- Natural Resources Conservation Service (NRCS). 1999. Soil Survey of Richmond County, North Carolina. United States Department of Agriculture.
- North Carolina Drought Management Advisory Council (NCDMAC). 2007. Statewide Drought Conditions Archive (online). Retrieved November 2007 from: www.ncdrought.org.
- Rosgen, D. 1994. Applied Fluvial Geomorphology. Wildland Hydrology: Pagosa Springs, CO.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.

APPENDIX A: FIGURES

EEP Project No. D04020-2

	LEGEND
	WETLAND RESTORATION
	WETLAND ENHANCEMENT
	WETLAND PRESERVATION
\sim	STREAM RESTORATION
\sim	STREAM RESTORATION (UNDEFINED CHANNEL)
\sim	STREAM ENHANCEMENT
\sim	STREAM PRESERVATION
\sim	STREAM

APPENDIX B: STREAM GEOMORPHOLOGY DATA

SURVEN	r data			
ELEV	ATION	FEAT	URE	
100	.00	LP	IN	
<u> </u>	.56 .56	BLF	PIN	
99. 98	.41			
98.	.88			EcoScience
<u>98</u> . 98.	.80 .29	EC	W	Companyion
98.	.20			Corporation
98.	.06			Raleigh, North Carolina
98. 98.	.80 .86	EO	W	REVISIONS
99.	20			
99.	.56			
<u>99</u> . 99.	.20	BRE	PIN	
100	.57	RP	IN	
SUMMAR	Y DATA			
ECTIONAL AR	EA	4.93 S	Q. FT.	
WIDTH		11.83	5 FT.	
		0.41	FT	
		0.41		
(DEPTH		0.78	FT.	Client:
I RATIO		28.	85	
T RATIO		33.	81	
TION		E	5	
		<u>_</u> `	-	Ecosystem
-sections istream d ection stc	facing lirection	esents		McDONALDS POND RESTORATION SITE
nate neid ns based ark; left p	on relative on elevation	=100.0 ft.		EEP Project No. D04020-2
				RICHMOND COUNTY, NORTH CAROLINA
ate	OCT. 2	007		Title:
eather	Sunny			
m	Jones,	Gloden		CROSS SECTION XS1-POOL
	XS1			
				Dsn. By: TAL TAL Ckd. By: MCG FEB 2008 Scale: NO SCALE ESC Project No.: 07-330.00 SHEET B1

SURVE	Y DATA				
ELEV	ATION	FEAT	URE		
100	0.00	LF	IN		
99.	.50	BLI			
<u>99</u> . 99.	.84				
99.	.44			EcoS	cience
<u> </u>	.79 .18			Comp	rotion
98 98	.81			Corpe	oration
97	.71			Raleigh, No	orth Carolina
<u> </u>	.85			REVIS	SIONS
98. 97.	.44				
97.	.88				
97.	.25				
<u> </u>	.82 .04				
98. 97	.15				
98.	.00	EC	W		
<u> </u>	.43 .16	EC	W		
<u>97</u> . 98	.84 04			INTERNATION	
97.	.72				
<u>98</u> . 97.	.13	EC	YV	Client:	
97. 97	.43 .63	T	N		7
98	.11	EC	W		
98. 97.	. 14				
<u> </u>	.90 .65			LCOS	/stem
98	.31			Enhan	PROCEAN
97.	.73				PROGRAM
97	./1 .28			Proiect:	
<u>97</u> . 97.	.80 .75				
98.	.03				
98.	.56			DESTO	
<u>98</u> . 97.	.24 .77				
98. 98	.36 .98				
98.	.82		ואוכ		
98. 99.	.16	RF	'IN	FFP Pro	iect No.
SUMMAR	RY DATA			D040	20-2
CTIONAL AR	EA	N/	′A*		
VIDTH		N/	Ά Χ	NORTH (COUNTY,
N DEPTH		N/	′A*	Title:	
DEPTH		N/	′A*		
RATIO		N/	′A*		
T RATIO		N/	′A*	CROSS	SECTION
TION		DA	15	XS2-B	RAIDED
etails				CHAN	INELS
				L Dsn. By:	Dwn. By:
-sections	s facing lirection			TAL	TAL
ection sto	ationing repr	esents		Ckd. By: MCG	Date: FFB 2008
s based	on relative			Scale:	NO SCALE
ırk; left p	oin elevation	=100.0 ft.		ESC Project No	
ote	OCT. 2	007		SH	EET
eather	Sunny				
m	Jones,	Gloden		B	2
	XS2				

XS3 LOOKING DOWNSTREAM

SURVEY DATA		
ELEVATION	FEATURE	
100.00	LPIN	
99.25	DLFIN	
99.22 99.38		
99.28 99.38		EcoScience
99.40	LTOP	Corporation
99.28	EOW	Raleigh, North Carolina
<u>98.37</u> 98.23	TW	REVISIONS
98.36 98.82	REOW	
99.24	DTOD	
99.45	RIUD	
<u> </u>		
99.25 99.08		
99.17		
99.16		
<u> </u>		
99.39	RPIN	
100.16	RPIN	Client:
SUMMARY DATA		
ECTIONAL AREA	6.34 SQ. FT.	
WIDTH	8 82 FT	
	0.71 FT	Ecosystem
K DEPTH	1.15 FT.	Enhancement
i ratio	12.42	
IT RATIO	45.35	Project:
TION	E5	
s-sections facing nstream direction ection stationing	represents	EEP Project No. D04020-2 RICHMOND COUNTY, NORTH CAROLINA
nate field location	ive	Title:
ark; left pin elevo	ition=100.0 ft.	
ate OC	T. 2007	CROSS SECTION XS3-RIFFLE
/eather Sur	nny	
ım Jor	nes, Gloden	Dsn. By: Dwn. By: TAL TAL
XS	3	Ckd. By: Date: MCG FEB 2008
		Scale: NO SCALE ESC Project No.:
		07-330.00
		SHEET
		B 3

SURVE	Y DATA			
ELEV	ATION	FEA	TURE	
100).00 34	LI	PIN PIN	
99.	.38			
99.	.34			- Easterna
99.	.13 .91			Ecoscience
98.	.93	т	OB	Corporation
98. 98.	.50			
97.	.79			
98. 98.	.23			-
98. 98.	.69 .77			
99. 99.	.29 .38			-
98. 99.	.75 .19			-
98. 98.	.80 .70			
99. 99.	.07 .35			
99. 99.	.32 .33			-
<u>99</u> 99.	.51 .44			Client:
99. 100	.43).24	BF	RPIN PIN	
SUMMAR	RY DATA			
ECTIONAL AR	REA	14.0	1 FT.	Ecosystem
WIDTH		29.82 FT.		Enhancement
N DEPTH		0.4	6 FT.	PROGRAM
X DEPTH		1.89	9 FT.	Project:
H RATIO		64	.83	McDONALDS
IT RATIO		16	5.76	POND
ATION		DAS	5/E5	RESTORATION
				SILE
				EEP Project No.
				D04020-2
				RICHMOND COUNTY, NORTH CAROLINA
				Title:
s-sections nstream c	s facing direction			
ection sta	ationing repr	esents		
nate field	locations.			CROSS SECTION
ns based ark: left r	on relative on elevation	=100.0 ft		X34-KIFFLE
, ioit p				
	r		I	
ate	OCT. 2	007		TAL TAL
	<u> </u>			Ckd. By: Date:
leather	Sunny			MCG FEB 2008
ım	Jones,	Gloden		Scale: NO SCALE
	NC 4			ESC Project No.:
	XS4			07-330.00
	XS4			07-330.00 SHEET B4

SURVEY	DATA				
ELEVA	TION	FEAT	JRE		
100.	00	LPI	N		
99.0 99.0	01 04				
99.0)4	TOE	3		
96.4	50			EcoS	rience
<u> </u>	15 37				
98.0)1 27			Corpo	ration
98.0	13			Raleigh, No	rth Carolina
98.9	97 59	RPI	N	REVIS	IONS
SUMMAR	Y-DATA				
ECTIONAL ARE	A	8.74 SC). FT.		
WIDTH		8.90	FT.		
N DEPTH		0.98	FT.		
X DEPTH		1.60	FT.		
H RATIO		9.0	8		
JT RATIO		50.5	6	INTERNATION	
		DAE	ГБ.		
ATION		DA5/	ED	Client:	
				Ecosy Enhance	stem ement PROGRAM
s-sections	facing			Project: McDOI PO RESTOI SI	VALDS ND RATION TE
ection sta nate field	tioning repr locations.	resents		EEP Pro D040	ject No. 20—2
ns based c ark; left pi	on relative in elevation	=100.0 ft.		RICHMOND North C	COUNTY, AROLINA
				Title:	
ate	OCT. 2	007			
/eather	Sunny			CROSS	SECTION
ım	Jones,	Gloden		X2K2-	RIFFLE
	XSR2				
				TAL Ckd. By: MCG Scale: ESC Project No	TAL Date: FEB 2008 NO SCALE :: 07-330.00
					5

SURVEY DATA					
ELEV	ATION	FEA	TURE		
100	0.00	L	.PIN		
99	8.83				
98 98	8.82 8.18				
<u>97</u> 97	7.91 7.13			- EcoSo	cience 🛛
97 97	20			Corpo	ration
98	3.01			Raleigh, No	rth Carolina
90				REVIS	IONS
97	7.63 7.07				
<u>96</u> 97	5.74 7.46			_	
97 98	7.78 3.49			_	
98	3.41				
98	3.93	F	PIN		
SUMMAR	RY DATA				
ECTIONAL AF	REA	6.93	SQ. FT.		
WIDTH		19.1	17 FT.		ALUPPAPER
N DEPTH		0.3	6 FT.		
		2.0	1 FT.	Client:	
			7.05		
			0.00		
I RATIO		2	0.86	Ecos	stem
TION		DA	5/E5	Enhand	ement
—sections stream d ection stc ate field	a facing lirection ltioning repr locations.	esents		McDOI PO RESTOI SI EEP Pro D040	NALDS ND RATION TE ject No. 20–2 county, carolina
s based rk; left p	on relative in elevation:	=100.0 ft.		Title:	
				CROSS	SECTION
ote	OCT. 20	07		XS5-	POOL
eather	Sunny				
n	Jones,	Gloden		Dsn. By:	Dwn. By:
	XS5			Ckd. By:	Date:
				MCG Scale:	FEB 2008
					NO SCALE
				ESC Project No	.:
					07-330.00
				SHI	EET
				B	6
					-

ATION	FEA	TURE	
0.00	Lf	PIN	
0.06 0.19	LT	OB	
8.55			
.15			EcoScience
7.22 7.49			Componetion
7.83 1.7.3			
0.00			Kaleigh, North Carolina
0.19	RT	OB	REVISIONS
	RI	PIN	
REA	11.37	SQ. FT.	
	16.0	5 FT	
	0.70) FT.	
	1.76	5 FT.	
		92	
		.52	U
	24	.92	
			Ecosystem Enhancement PROGRAM
s facing direction			McDONALDS POND RESTORATION SITE
ationing repr locations.	esents		EEP Project No. D04020-2
on relative pin elevation	=100.0 ft.		RICHMOND COUNTY, NORTH CAROLINA
1			Title:
OCT. 2	007		
Sunny			CROSS SECTION
Jones,	Gloden		
XSR3			Dsn By: Dwn By:
			TAL TAL Ckd. By: Date: MCG FEB 2008 Scale: NO SCALE ESC Project No.: 07-330.00 SHEET
	 D.00 D.00 D.00 D.00 D.00 D.00 D.19 D.15 D.22 A9 B3 T3 D0 D 10 19 B9 XY DATA REA EXA EXA Control of the second se	0.00 LT .06 .19 LT .55 .89 .15 .22 .49 .83 .73 .00 .10 .19 RT .83 .73 .00 .10 .11	J.00 LPIN J6 LTOB J9 LTOB J55

SURVEY	r data			
ELEV	ATION	FEA	TURE	
100 99.	.00 .36	BI	PIN _PIN	
<u> </u>	.30 .45			
<u> </u>	.40 .16			FcoScience
98. 98.	.88 .84	E	OW	Corporation
<u>97</u> . 97.	.53 .40			Raleigh, North Carolina
97. 97.	.32 .84	SOLID S	UBSTRATE	REVISIONS
<u>97</u> . 99.	.95 .00			
99. 99.	.32 .46			
99 99.	.41 .40			
<u> </u>	.48 .55			
99.	.43 .51			
98.	.35			
98.	.84 .31			
99.	.57			
99.	.33 .43			Client:
99	.51 .37	Bf	RPIN	
SUMMAR		R	PIN	
		17.1	50 FT	Ecosystem
MUDTU	EA	01	5Q. FI.	Enhancement
		21.,	0 FT	PROGRAM
		3.3	U FI. 1 ET	Project:
	C DEPTH 3.31		S 20	McDONALDS
		1	3.1.1	POND
			5/F5	RESTORATION
			5725	
				EEP Project No.
				D04020-2
]	RICHMOND COUNTY, NORTH CAROLINA
	6			Title:
nstream d	lirection			
ection sto	tioning repr	esents		
nate field	locations.			CROSS SECTION
ns based ark; left p	on relative oin elevation	=100.0 ft.		
			l	
			1	Dsn. By: Dwn. By:
ate	OCT. 2	007		TAL TAL
leather	Suppy			Ckd. By: Date:
eutrier	Sunny			MCG FEB 2008
ım	Jones,	Gloden		NO SCALE
	VCE			ESC Project No.:
	720]	07-330.00
				SHEET
				DO

SURVEY DATA				
EATURE	STATION	ELEVATION	FEATURE	
LPIN	181.7 183.6	97.05 96.97		
	184.7 185.2	97.22 97.67		
	188.7 191.3	96.87 97.17		EcoScience
	194.8	96.51 96.57		Corporation
	201.1	97.89 97.89		Raleigh, North Carolina
	216.4	97.75		REVISIONS
	233.1 239.3	97.77 97.83		
	241.7 243.0	97.59 96.64		
	244.5 246.5	96.38 96.89		
	247.2 253.3	97.81 97.97		
	258.3 266.8	97.66 97.26		
	277.9	98.49 97.68		
	281.4	97.00 97.47 97.71		Ψ
	287.8 289.2	96.96 98.07		Client:
	291.0 295.7	97.73 98.18		
	299.8 303.5	98.10 98.52		
	303.7	99.57	RPIN	Ecosystem
SUMMAR	Y DATA			Enhancement
ECTIONAL AR	EA	N/	⁄A*	
WIDTH		N/A*		
AN DEPTH		N/A*		MCDONALDS POND
X DEPTH		N/A*		RESTORATION
H RATIO		N/A*		SITE
NT RATIO		N/A*		
ATION		D/	45	FFP Project No.
details				D04020-2
				RICHMOND COUNTY, NORTH CAROLINA
s—sections nstream d	facing			Title:
ection sta nate field	tioning repr locations.	resents		
ns based (ark; left p	on relative in elevation	=100.0 ft.		CROSS SECTION XS7-BRAIDED
				CHANNELS
ate	OCT. 2	007		Dsn. By: Dwn. By:
/eather	Sunny			TAL TAL Ckd. By: Date:
ım	Jones, Gloden			MCG FEB 2008 Scale:
XS7			NO SCALE ESC Project No.:	
				07-330.00
				SHELI
				RQ

SURVEY DATA				
EATURE	STATION	ELEVATION	FEATURE	
LPIN	117.0 123.2	99.32 99.12		
	130.4 136.1	99.05 99.28		
	137.8 139.8	99.19 98.57		Factorian
	140.8 143.4	98.44 98.31		Constitute
	146.7 148.5	98.32 98.36		Corporation
	149.2 154.6	98.95 99.12		
	161.2 162.0	99.20 98.46		REVISIONS
	165.3	98.31 98.38		
	168.2 171.1	98.97 99.28		
	172.8	98.73 99.75		
	177.2	98.87 99.10		
	183.5	98.43		
	187.6	98.43		
	194.7	99.48		W
	198.6	98.55		Client:
	200.7	98.87		
	205.6	99.29 99.45		
	210.6	99.14 98.55		
	212.8 213.6	99.13 99.61		Ecosystem
	213.8	101.25	RPIN2	
SUMMAR	Y DATA			
ECTIONAL AR	EA	N/	′A*	Project:
WIDTH		N/A*		
N DEPTH		N/A*		RESTORATION
X DEPTH		N/A*		SITE
H RATIO		N/A*		
IT RATIO		N/A*		
TION		DA5		EEP Project No.
letails				004020-2
				RICHMOND COUNTY, NORTH CAROLINA
s-sections nstream d	facing lirection			Title:
ection sta nate field	itioning repr locations.	resents		CROSS SECTION
ns based ark; left p	on relative in elevation	=100.0 ft.		CHANNELS
ate	OCT. 2	007		TAL TAL
leather	eather Sunny			MCG FEB 2008 Scale:
m Jones, Gloden		Gloden		NO SCALE ESC Project No.:
	XS8			07-330.00
				SHEET
				B10

Project Name:	McDonalds Pond Restoration Site
Task:	Longitudinal Profile
Date Surveyed:	Oct-07
Crew:	DGJ, JDC

Q4-4	TWG	WS	BKF	Station.	TWG	WS	BKF
Station	Elevation	Elevation	Elevation	Station	Elevation	Elevation	Elevation
0.0	97.85	99.02	99.60	607.5	94.56		
10.0	98.27	98.93		611.7	95.05	96.03	
19.8	97.63	98.92		618.1	94.02		
29.6	97.86	98.92		624.1	94.52	96.03	
39.0	97.40	98.79	99.46	633.4	94.58		
50.0	97.07	98.75		650.3	94.66	95.96	96.36
59.9	97.34	98.80		657.3	95.18		
66.3	97.79	98.78		667.1	94.73	95.87	
73.8	98.02	98.73		677.7	94.20		
79.1	97.46	98.71		691.1	94.14	95.75	
88.8	97.23	98.63	98.80	699.7	94.52	95.82	96.20
100.5	97.56	98.64		725.4	94.36		
114.8	96.87			749.4	94.12	95.60	
127.7	97.31	98.51		766.8	93.91		
155.8	96.78	98.60		772.9	93.73	95.56	96.13
164.7	97.10			785.1	94.65		
184.9	96.91	98.50		790.5	93.29	95.49	
210.0	97.11	98.44		800.0	94.28		
230.1	97.05			812.8	94.07	95.41	
246.1	97.02	98.27	98.63	824.0	93.50		95.79
262.5	95.72	98.24		834.2	94.17	95.37	
268.1	97.56	98.24		840.2	93.63		
291.7	96.80	98.15		847.7	94.01		
303.8	97.44	98.03	98.38	853.5	93.46	95.29	
325.9	95.95	98.02		860.4	93.77		
341.6	97.07	97.88		874.4	94.09	95.29	95.66
353.4	97.15	97.74		end profile			
363.3	96.78						
379.8	96.67	97.53					
399.6	96.19						
413.6	96.26	97.25	97.32				
425.9	95.83	97.13					
436.5	96.35	97.11					
452.1	95.94	96.90					
470.1	95.73	96.80	97.06				
483.0	95.37						
496.0	95.60	96.49					
503.6	94.84	96.49					
512.0	95.35						
526.3	95.16	96.37					
535.3	94.86	96.37	96.64				
548.8	94.87						
570.7	94.73	96.30					
584.2	95.45						
598.0	95.07	96.19	96.74				

APPENDIX C: AQUATIC COMMUNITY DATA

SPECIES	T.V .	F.F.G.	Reach 2	Reach 3
ANNELIDA				
Oligochaeta	*10	CG		
Tubificida				
Enchytraeidae	9.8	CG	2	
Rhynchobdellida				
Glossiphoniidae		Р		
Batrachobdella phalera	7.6	Р		1
ARTHROPODA				
Arachnoidea				
Acariformes				1
Crustacea				
Isopoda				
Asellidae		SH		
Caecidotea sp.	9.1	CG		1
Decapoda				
Palaemonidae				
Palaemonetes kadiakensis	7.1	CG	1	
Insecta				
Ephemeroptera				
Baetidae		CG		
Acerpenna pygmaea	3.9		1	
Diphetor hageni	1.6		2	2
Plauditus sp.		CG	7	
Pseudocloeon sp.	4	CG	3	8
Ephemeridae		CG		
Hexagenia sp.	4.9	CG		2
Ephemerellidae		SC		
Eurylophella sp.	4.3	SC	16	25
Heptageniidae		SC		
Maccaffertium (Stenonema) sp.		SC	85	7
Leptophlebiidae		CG		
Paraleptophlebia sp.	0.9	CG	3	2
Odonata				
Aeshnidae		Р		
Boyeria vinosa	5.9	Р	3	6
Calopterygidae		Р		
Calopteryx sp.	7.8	Р	9	6
Coenagrionidae		Р		
Argia sp.	8.2	Р	4	31
Enallagma sp.	8.9	Р	2	7
Corduliidae		Р		
Macromia sp.				2

SPECIES	T.V.	F.F.G.	Reach 2	Reach 3
Neurocordulia sp.	5		4	5
Gomphidae		Р		
Dromogomphus ornatus				2
Gomphus sp.	5.8	Р	1	2
Stylurus townesi		Р		1
Libellulidae		Р		4
Plecoptera				
Leuctridae		SH		
Leuctra sp.	2.5	SH	17	26
Perlidae		Р		
Perlesta sp.	4.7	Р	1	
Megaloptera				
Corydalidae		Р		
Nigronia serricornis	5	Р		1
Trichoptera				
Hydropsychidae		FC		
Hydropsyche sp.		FC	4	1
Lepidostomatidae		SH		
Lepidostoma sp.	0.9	FC	2	1
Leptoceridae		CG		
Triaenodes ignitus	4.6	SH	1	
Philopotamidae		FC		
Chimarra aterrima	2.8	FC	4	2
Lepidoptera				
Pyralidae		SH		
Petrophila sp.	2.1	SC	1	
Coleoptera				
Elmidae		CG		
Ancyronyx variegata	6.5	SC	2	
Dubiraphia sp.	5.9	SC		1
Dubiraphia vittata	4.1	SC		7
Promoresia sp.	2.4	SC	1	
Promoresia elegans				1
Stenelmis sp.				1
Diptera				
Chironomidae				
Apsectrotanypus johnsoni	0.1		1	7
Conchapelopia sp.	8.4	Р	2	
Orthocladius sp.		CG		2
Parametriocnemus sp.	3.7	CG	1	
Paratanytarsus sp.	8.5	CG	1	1
Polypedilum halterale gp.	7.3	SH		2
Polypedilum illinoense	9	SH		1

SPECIES	T.V.	F.F.G.	Reach 2	Reach 3
Procladius sp.	9.1	Р		4
Psectrocladius sp.	3.6	SH	1	1
Rheocricotopus tuberculatus	5.1	CG		1
Rheotanytartsus exiguus gp.	5.9		1	2
Stenochironomus sp.	6.5	SH	1	
Tanytarsus sp.	6.8	FC	1	2
Thienemanniella xena	5.9	CG	1	
Tribelos jucundum	6.3			1
Simuliidae		FC		
Simulium sp.	6	FC	6	1
Tipulidae		SH		
Pedicia sp.		Р	1	
TOTAL NO OF ORGANISMS			138	101
			13	14
FPT index			13	10
FPT abundance			146	76
BIOTIC INDEX Assigned values			4.58	5.31

APPENDIX D: NCDWQ HABITAT ASSESSMENT FORM - COASTAL PLAIN

3/06 Revision 7

Habitat Assessment Field Data Sheet **Coastal Plain Streams**

TOTAL SCORE

Biological Assessment Unit, DWQ Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which here the total the interval of the stream. description which best fits the observed habitat some is determined by adding the results from the different metrics.

Stream	Location/road:	(Road 1	Name)Co	ounty
Date	CC#	Basin	Subbas	sin
Observer(s) Type	e of Study: □ Fish □E	Benthos 🛛 Basinwide	□Special Study (Descr	ibe)
LatitudeLong	gitudeE	coregion: CA CA	SWP 🗆 Sandhills 🗆 CE	3
Water Quality: Temperatur	re°C DO	mg/l Conductivity	(corr.)µS/cm	pH
Physical Characterization: you observe driving thru th	Visible land use refers the watershed in waters	s to immediate area th hed land use.	at you can see from sar	npling location. Check off wha
Visible Land Use:%Fallow Fields	%Forest % Commercial	%Residential %Industrial	%Active Pasture %Other - Describe:	% Active Crops
Watershed land use D Fore	est 🛛 Agriculture 🗆 Urb	an 🗆 Animal operation	ns upstream	
Width: (meters) Stream Width Bank Height (from deepest	Channel (at top of variable Braided cha part of channel to top of	of bank) Stre annel □Large river > bank): (m)	am Depth: (m) Avg 25m wide	Max
Flow conditions : □High [Channel Flow Status Useful especially un A. Water reaches ba B. Water fills >75% C. Water fills 25-75 D. Root mats out of E. Very little water	□Normal □Low der abnormal or low flo use of both banks, minim of available channel, or % of available channel, water	w conditions. Ial channel substrate exp <25% of channel substrate many logs/snags expose int as standing pools	oosed rate is exposed d	
Turbidity: Clear Slight Good potential for Wetland Details	ntly Turbid Turbid Is Restoration Project?	□Tannic □Milky □ ?? □ YES □ NO	Colored (from dyes) □C	Green tinge
Channelized ditch Deeply incised-steep, strai Recent overbank deposits Excessive periphyton grow	ght banks □Both banks □Bar develo /th □Heavy fila:	s undercut at bend pment mentous algae growth	□Channel filled in w □Sewage smell	ith sediment
Manmade Stabilization: DN Weather Conditions:	□Y: □Rip-rap, ceme	ent, gabions □ Sedimer Photos: □N □Y □	nt/grade-control structure]Digital □35mm	e □Berm/levee
Remarks:	SECTION DI 1 CD	MONDACK		
I YPICAL STREAM CRO	55 SECTION DIAGRA	AM ON BACK		

I. Channel Modification	
	Score
A. Natural channel-minimal dredging	15
B. Some channelization near bridge, or historic (>20 year old), and/or bends beginning to reappear	10
C. Extensive channelization, straight as far as can see, channelized ditch	5
D. Banks shored with hard structure, >80% of reach disrupted, instream habitat gone	0
Remarks	Subtotal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >50% of the reach is snags, and 1 type is present, circle the score of 16. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). <u>Mark as Rare, Common, or Abundant.</u>

_____Sticks _____Snags/logs _____Undercut banks or root mats _____Macrophytes _____Leafpacks

	>50%	30-50%	10-30%	<10%	
	Score	Score	Score	Score	
4 or 5 types present	20	15	10	5	
3 types present	18	13	8	4	
2 types present	17	12	7	3	
1 type present	16	11	6	2	
No substrate for benthos coloniz	zation and n	o fish cover		0	
□ No woody vegetation in riparian zone Remarks					Subtotal
4. silt/clay/muck dominant B. Substrate homogeneous 1. nearly all gravel 2. nearly all sand 3. nearly all detritus 4. nearly all silt/clay/muck					4 12 7 4 1

A. Pools present	Score
1. Pools Frequent (>30% of 100m length surveyed)	
a. variety of pool sizes	10
b. pools about the same size (indicates pools filling in)	8
2. Pools Infrequent (<30% of the 100m length surveyed)	
a. variety of pool sizes	6
b. pools about the same size	. 4
B. Pools absent	
1. Deep water/run habitat present	4
2. Deep water/run habitat absent	. 0
-	Subtotal_
Remarks	Page Total

Remarks

V. Bank Stability and Vegetation	Score	Score
A. Banks stable or no banks, just flood plain		
1. little or no evidence of erosion or bank failure, little potential for erosion	10	10
B. Erosion areas present		
1. diverse trees, shrubs, grass; plants healthy with good root systems	9	9
2. few trees or small trees and shrubs; vegetation appears generally healthy	7	7
sparse vegetation; plant types and conditions suggest poorer soil binding	4	4
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow	2	2
5. little or no bank vegetation, mass erosion and bank failure evident0	0	
	•	Fotal

Remarks_

VI. Light Penetration (Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead).

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	7
D. Stream with minimal canopy - full sun in all but a few areas	2
E. No canopy and no shading	0
המתענות האחרה איז המתענות איז איז איז הייניים אינטר המערכי האיז האחרה איז האחר איז היינים איז איז איז איז איז א איז	Subtotal
Remarks	

VII. Riparian Vegetative Zone Width

Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks refer to the near-stream portion of the riparian zone (banks); places where pollutants can directly enter the stream.

	Lft. Bank	Rt. Bank
	Score	Score
A. Riparian zone intact (no breaks)		
1. zone width > 18 meters	5	5
2. zone width 12-18 meters	4	4
3. zone width 6-12 meters	3	3
4. zone width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. zone width > 18 meters	4	4
b. zone width 12-18 meters	3	3
c. zone width 6-12 meters	2	2
d. zone width < 6 meters	1.	1
2. breaks common		
a. zone width > 18 meters	3	3
b. zone width 12-18 meters	2	2
c. zone width 6-12 meters	1	1
d. zone width < 6 meters	0	0
	Т	otal

Remarks_

Page Total

TOTAL SCORE

This side is 45° bank angle.

APPENDIX E: VEGETATION MONITORING PLOT PHOTOS

Year 1 (2006)

Year 1 (2006)

Year 2 (2007)

Year 2 (2007)

APPENDIX F: GROUNDWATER GAUGE HYDROGRAPHS

(.ni) listnisA 0.5 40 3.5 3.0 2.0 10 0.0 2.5 2 Nov S Nov growing season Gauge 5 (Reference) Gauge 2 (On-Site) Gauge 3 (On-Site) Gauge 4 (On-Site) Gauge 1 (On-Site) End of t O Rainfall 44% of growing season Sep 98 days McDonalds Pond Restoration Site Groundwater Gauge Hydro graphs Monitoring Year 1 (2006) Aug ς 2n¥ Figure F-1 Date Ę Jun Beginning of growing season May Àpr 4.0 3.0 2.0 10 -1.0 -15 3.5 2.5 50 0,0 5 -0.5 Depth to Groundwater (ft.)

EEP Project No. D04020-2

McDonalds Pond Restoration Site

EEP Project No. D04020-2